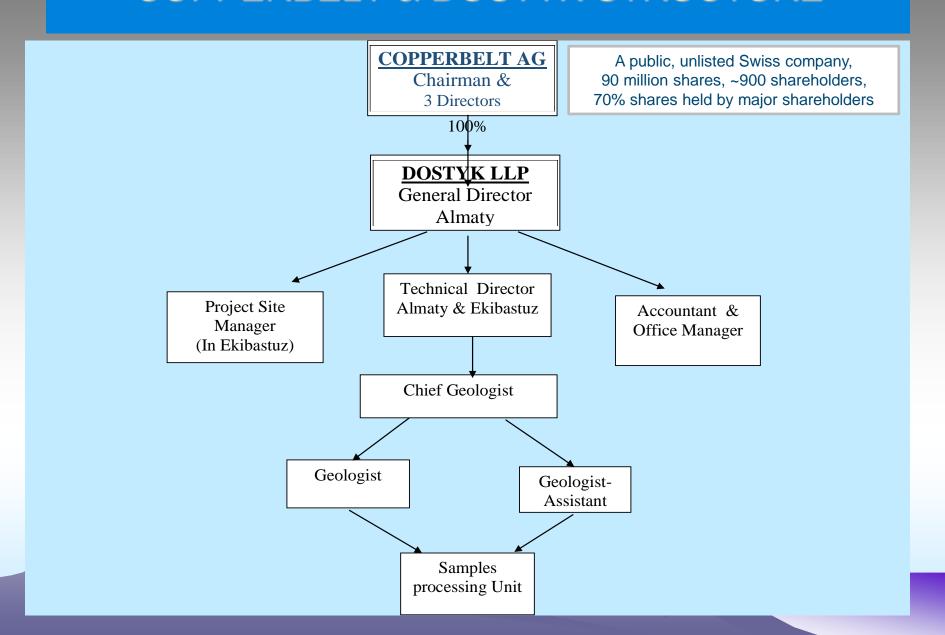
COPPERBELT AG


www.copperbeltlimited.com

Two Large Gold-Copper-Porphyry Systems in Kazakhstan

BESKAUGA DEPOSIT – The Largest Undeveloped Copper-Gold Project in Kazakhstan

- **BESKAUGA-MAIN** A Standout Copper-Gold Deposit Due to Excellent Infrastructure
- Currently In Pre-Feasibility Study
- JORC Combined Resources: 590 million tonnes containing
 3.34 million t of Copper Equiv or 15.7 million Oz of gold Equiv
- Potential for Order of Magnitude Larger Resource
- ➤ <u>BESKAUGA-SOUTH</u> A Gold Deposit With Low-Cost Gold Recovery Through Gravity Separation

COPPERBELT & DOSTYK STRUCTURE

COPPERBELT AG

www.copperbeltlimited.com

Management:

Dr Waldemar Mueller, M.Sc, PhD (Geology), M.AusIMM Chairman & Managing Director

Dr. Waldemar Mueller has over 40 years experience in exploration and valuation of mineral resources. The last 20 years he has worked on various leadership positions with mineral exploration companies in Germany (projects in Brazil & Kazakhstan), in Canada (projects in Russia & Kazakhstan), in Australia (projects in Kyrgyzstan, Georgia & Kazakhstan).

Dr Mueller has strong background in gold and base metals deposits of Kazakhstan and Kyrgyzstan, he has visited and examined different mineral deposits worldwide through his consulting firm Kiintas Mining Management Ltd. Dr Mueller is a Competent Person as defined in JORC Code.

Dr. Georg H. Schnura, Director

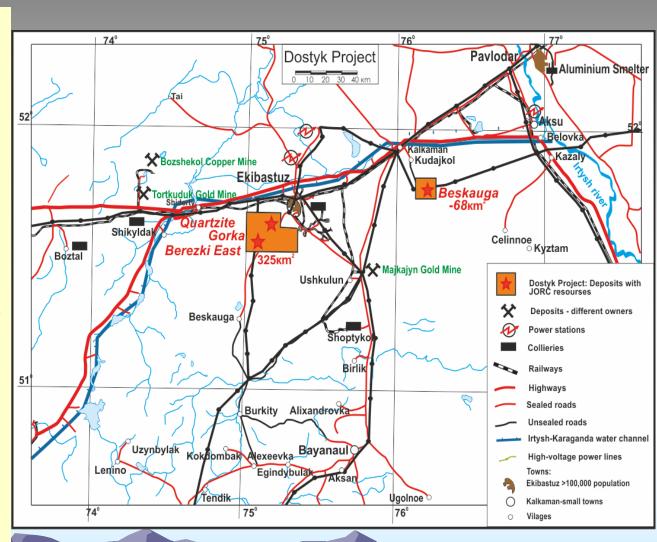
Dr. George H. Schnura, after many years in banking, has worked as consultant for renown international companies and has advised governments in emerging economies on structural and macro economical reforms. He has been Board member in different public companies, mainly in Spain. He has a worldwide network in the business and political community.

Peter Goeggel, LIC. IUR. Advokat, LL.M., Director

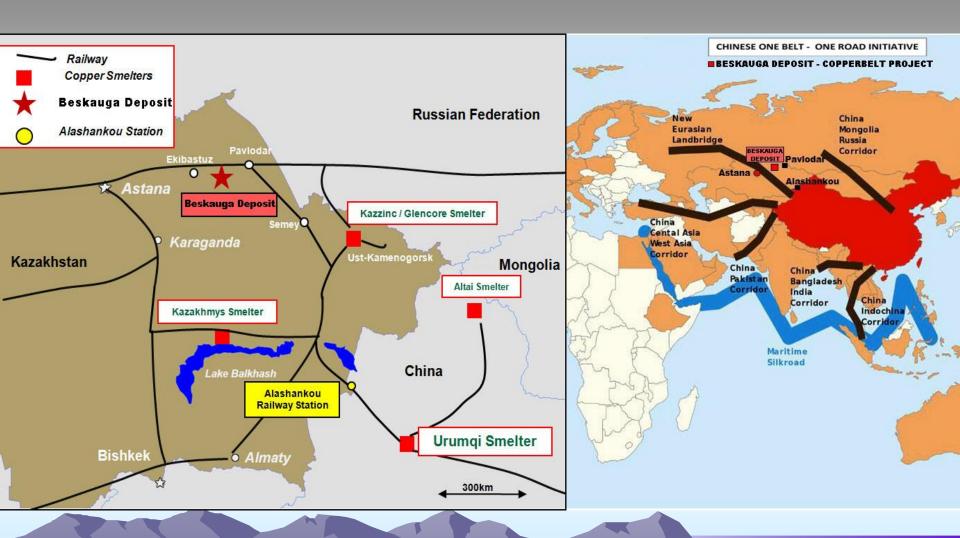
Mr. Peter Goeggel is a partner of NEOVIUS Schlager & Partner in Basel, Switzerland and practices as a lawyer with specialization in international economic law. He has ample experience in holding structures with exploration companies as subsidiaries. He accomplishes corporate actions, coordinates prospectus procedures and supports companies with their IPO. He is monitoring the legal work of the subsidiaries in connection with the exploration licenses and maintains contact with the executive directors of the subsidiaries.

Yurijs Gorbovs, Director

Has worked in leadership positions for development and building of multifunctional infrastructures (Riga/Latvia) hotels (Tbilisi/Georgia) also developed and managed internationally real estate projects.


DOSYK LLP

- Dostyk is a 100% Subsidiary of Copperbelt AG/Switzerland
- Dostyk is a Licence Holder of Maykubinsk Exploration & Mining Licence, located in Paylodar Province of Kazakhstan close to Russia and China Boarders



DOSTYK PROJECT EXCELLENT INFRASTRUCTURE

- Located in a Mining and Industrial Region of Kazakhstan.
- Ekibastuz (within 80km) is a city of ~150,000, Capital Astana only 300 km away.
- Four large power stations produce 40% of Country power (low cost).
- ☐ 1,150kV power line crossing the Beskauga Deposit, nearest sub-station 13km away
- ☐ Irtysh-Karaganda Water Canal (250,000m3/h) running 16km from Beskauga Deposit
- Railway station 19km away, sealed roads, good communication, mining labour & services.
- Close to Bozshakol Copper-Porphyry Mine

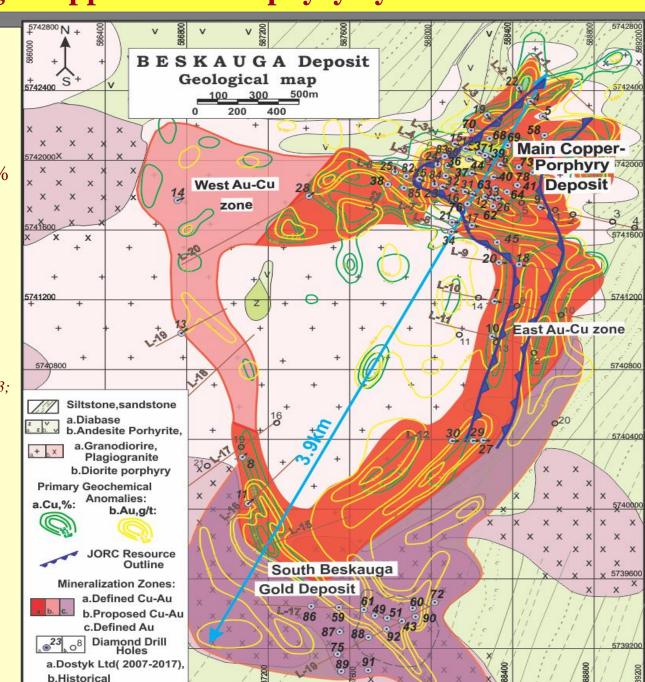
China's One Belt – One Road Initiative Beskauga Deposit: Railway Connections to Copper Smelters in Kazakhstan, China & Russia

Dostyk Project

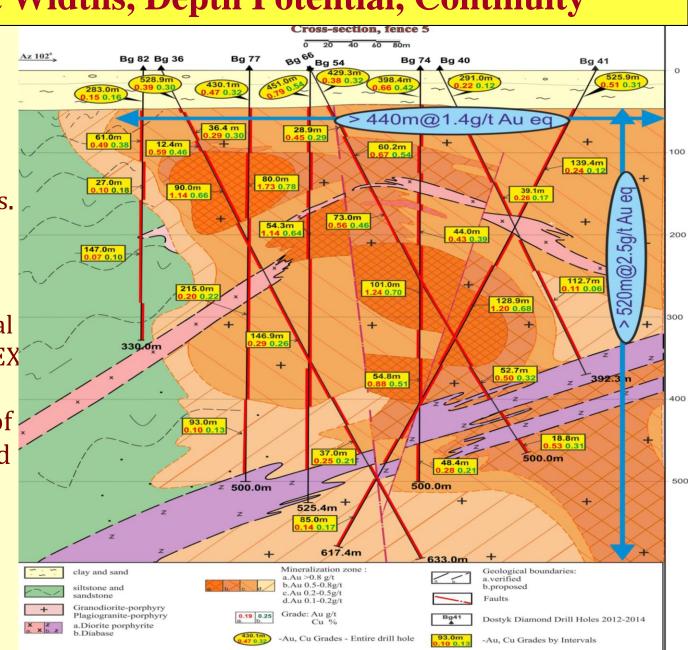
Exceptional Topography, No Settlements, No Agriculture)

low cost exploration

DOSTYK PROJECT


EXCELLENT (LOW COST) INFRASTRUCTURE

Beskauga Copper-Gold Porphyry System


Beskauga-Main Deposit

- Beskauga is a classic gold-rich Copper-Porphyry System
- Beskauga is the largest of four explored deposits on license (92% of the combined Licence resources).
- □ 94 Diamond drillholes=50,000m · 47,000 Core samples
- □ 2,800 Geochemical drillholes =110,000m,
 - 9,000 Geochemical samples from hard rocks
- □ DDHs topographic survey:
- High-precise 12 channels GPS Trimble R3;
- Shallow bedrock drilling has confirmed gold & copper mineralization over 8 sq km.
- □ Main area of mineralization is 4km by 1km; it is Au-Cu rich in the north and gold-rich in the south (South Beskauga Gold Deposit). Less than 50% of the main zone drilled to date.
- □ JORC Compliant Resources at Au cut-off 0.2g/t: 15.7Moz Au equiv or 3.34Mt Cu equiv.

Beskauga Main Deposit Significant Widths, Depth Potential, Continuity

- Continuity of mineralization has been confirmed by diamond drilling at greed 50 x 50 meters.
- Bulk high-grade SEplunging shoot highlighting potential fast payback of CAPEX
- Impressive width of 440m at 1.4g/t gold equiv. with over 500m in depth direction at 2.5g/t gold equiv.

Beskauga-Main Resources, Gold Cut-Off 0.20g/t

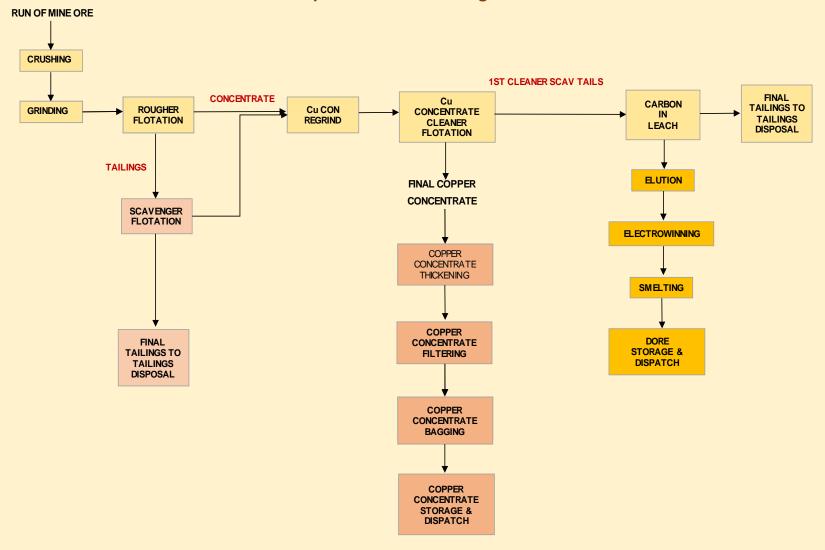
Statement Jan 2015

Category	'000 t	Au, g/t	Cu, %	Ag, g/t	Mo, %	Au, oz	Cu, tonnes	Ag, oz	Mo, tonnes
Indicated	247,845	0.42	0.30	1.18	0.002	3,340,060	731,806	9,437,000	5,310
Inferred	306,638	0.37	0.20	0.51	0.001	3,614,520	604,007	5,004,000	2,731
Indicated + Inferred	554,483	0.39	0.24	0.81	0.002	6,954,580	1,335,813	14,441,000	8,040
Non Category	79,100	0.40	0.13	0.82	0.007	1,027,020	100,520	-	5,550
Total	633,607	0.40	0.23	0.81	0.003	7,981,600	1,436,333	16,526,000	13,592

Indicated Resources Gold & Copper Equivalent					
Indicated	Gold	Equiv	Copper Equiv		
'000 t	Au Equiv, g/t	Au Equiv, oz	Cu Equiv, %	Cu Equiv, t	
247,845	0.88	7,012,200	0.60	1,487,100	

Beskauga Main & Beskauga South Deposits

Metallurgical Testworks Successful in Obtaining Good Recoveries & Grades


(Wardell Armstrong International/UK, Testworks update Jun 2016)

Ore Type		Copper-Gold Ore (Beskauga Main)				
	Cu, %	Au, g/t	Ag, g/t	Mo, %		
Head Assay	0.30	0.43	1.21	0.003		
Flotation Concentrate	Recovery 82.66% Grade 22%Cu	Recovery 56.65% (63% adding CIL Circuit) Grade 23.0/g/t Au in Con + 0.3g/t as Dore	Recovery 60.0% Grade 37.8g/t Ag	Saleable concentrate not achieved		

Ore Type		Gold Ore (Beskauga South)		
	Cu, %	Au, g/t	Ag, g/t	Mo, %
Head Assay	0.01	1.13	<0.5	-
Gravity & Flotation Concentrate	-	Recovery 84% Grade 64g/t Au	-	-

- <u>Beskauga Main.</u> Metallurgical tests conducted on three samples representing a 500m-deep open pit. Testworks obtained a commercial copper concentrate with gold and silver credits. Adding CIL circuit to treat 1st Cleaner scav. tails would increase gold recovery from 56.65% to 63%.
- Beskauga South. Gravity separation has recovered 62% of the gold into a concentrate assaying 64g/tAu. Flotation of the gravity tail added 22% gold for a total combined gold recovery 84%.

BESKAUGA MAIN Conceptual Block Flow Diagram

Calculation of projected additional revenue from installing a CIL circuit to treat the 1st cleaner scav tails circuit

Annual Tonnage	Тра	13,000,000
Annual Hours	h	8,760
Plant Utilisation	%	0.92
Annual Available Hours	h	8,059
Annual Throughput Rate	t/h	1,613
1st Cleaner Scav Tails Mass	%w/w	1.76
CIL Feed Throughput Rate	t/h	28.39
1st Cleaner Scav Tails Volume	t/a	228,800
1st Cleaner Scav Tails Grade	g/tAu	0.57
1st Cleaner Scav Tails Gold Distn	%	9.90
Estimated Cyanide Leach Recovery	%	60.40
Additional Gold Recovered to Dore	%	5.92
Financials		
Recovered Gold Grade	g/t	0.34
Annual Gold Recovered	g	78,771
	oz	2,533
Spot Gold Price	US\$/oz	1,250
Annual Project Revenue	US\$	3,165,691
Life of Mine	Yr	17.00
LoM Project Revenue	US\$	53,816,752

HYDROGEOLOGICAL & GEOTECHNICAL FEATURES

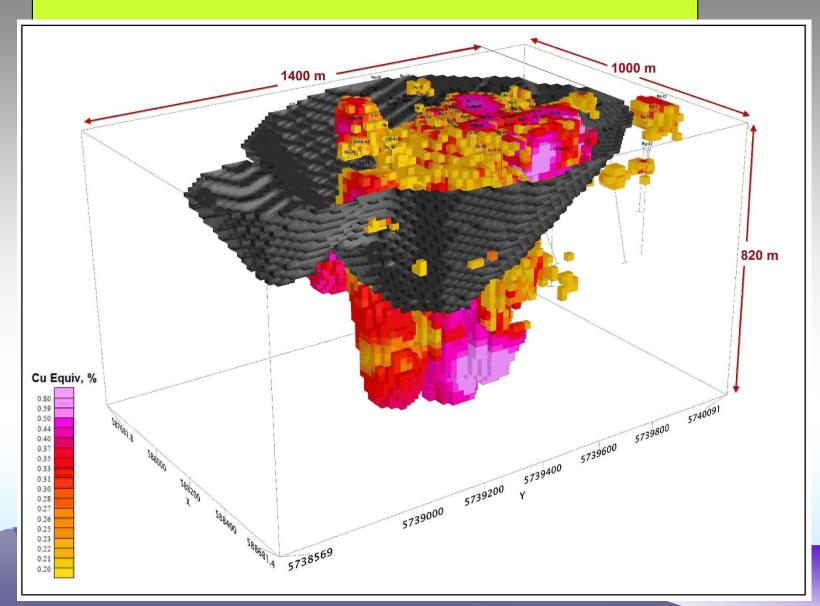
- Climatic conditions: small atmospheric precipitation mostly in autumn-winter periods and high water evaporability resulted in a poor feeding of the underground water.
- Permanently active water which could complicate mining are absent in the deposit area.
- The ore body is seated under 20 to 45m thick Cenozoic sands and clays.
- The ore-hosting rocks are poorly fissured and stable in the open pit walls. Stability of open pit walls:
 - Slope angle of a pit in host rocks shall be at most 76°. A bench height under these conditions may be unrestricted.
 - Stability of Dumps: Bed-rocks: bench height at most 20-25m; Slope angle 30-35°.

For sand-and-clay rocks: bench height at most 10-15 m; Angle of slope = 35-40°.

- A water content of the bed rocks is quite poor owing to a low fissuring of the rocks and absence of large regional-scale faults in the deposit area
- The Underground water of the overburden is weakly saline and suitable for use for ore processing.
- The water inflows into open pit from overburden is expected at 243 m³/hour
- The quantity of the water from mine dewatering (mine drainage) operations may fully satisfy the need of the mining and processing for water and may also meet requirements for drinking water.

Beskauga-Main Deposit - Pit optimisation (conceptual)

- Au Cut-off 0.2 g/t, Depth restriction 500m, CAPEX not considered
- Metals recovery: Au-66.7%, Cu-88.3%, Ag-60%
- Prices: Cu US\$7,000/t(\$3.18lb); Au US\$1,1,300/Oz; Ag US\$18/Oz


	Parameter	Unit	Indicated	Waste	Total			
	Ore weight	Mt	216	-	216			
	Waste weight	Mt	12	336	348			
	Ag quantity	t	141	-	141			
	Ag revenue	M\$	90	-	90			
	Au quantity	t	44	-	44			
	Au revenue	M\$	1,843	-	1,843			
	Cu quantity	Kt	533,557	-	533,557			
100	Cu revenue	M\$	3,735	-	3,735			
13897000E	Mining cost	M\$	555	370	925	N0000N		N00000
0E	Processing cost	M\$	1,556	-	1,556	25		9
081	Pit surplus	M\$	3,177		3,189			
574000N 5741000N 574200N 574200N	Classification Inferred Indicated Indicated	00 PL 40000L 130000CE	0000L		0 230 430	NOTE: 100 PER PROPERTY OF THE	Classification 9 2 X Indicated Indicated	-1000RL
			G			: 6		2)

Oblique view of ultimate undiscounted pit shell and block model

Section view looking East of pit shell and block model

Beskauga-Main Deposit - Pit optimisation (conceptual)

- Cu Equiv. cut-off 0.2%
- Prices: Cu US\$7,000/t(\$3.18lb); Au US\$1,1,300/Oz; Ag US\$18/Oz

MINING FEATURES

*Kazakh government takes revenue royalties of 4.7% for Cu and 5% for Au, Ag. Corporate tax is 20%, refundable VAT is 12%. Government does not hold direct or indirect equity.

Quotation from Local Mining Contractor BASIS-CT LTD:

	Stripping: Excavation + Haulage + Roads + Waste Dumps	US\$1.00/t
•	Ore & Strip Blasting	US\$1.42/t
•	Mining: excavation + Haulage to Processing Plant	US\$1.00/t

Electricity (US\$/kWh):

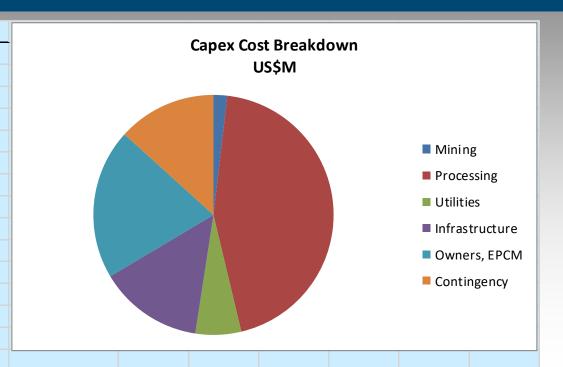
•	Day (7.00-19.00)	0.07
•	Evening (19.00-23.00)	0.16
٠	Night (23.00-7.00)	0.02
	Average 24h	0.06

Salaries in Mining Industry in KZ, (in US\$):

•	Senior Geologist	1,500 - 2,000
-	Geologist	700 - 1,000
-	Mining engineer	700 - 2,000
-	Ore Processing	800 - 2,000
-	Skilled worker	500-1,000
•	Unskilled worker	300-400

BESKAUGA MAIN DEPOSIT Financial Model for Indicated Resources only

210Mt Ore (pit depth 500m)


Gold US\$/oz 1,250

Copper US\$/lb 2.95 (6,500/t)

	Unit	Total
Annual Production	Mtpa	13.0
Mine Life	Years	16.1
Net Annual Revenue	US\$ M	296.0
Annual Cash Costs	US\$ M	117.1
Initial CAPEX	US\$ M	480
Net Present Value (7.5%)	US\$ M	1,101.5
Internal Rate of Return		31.6
IIILEI II AI KALE OI KELUI II	%	31.0
Simple Pay-Back Period	Years	2.7

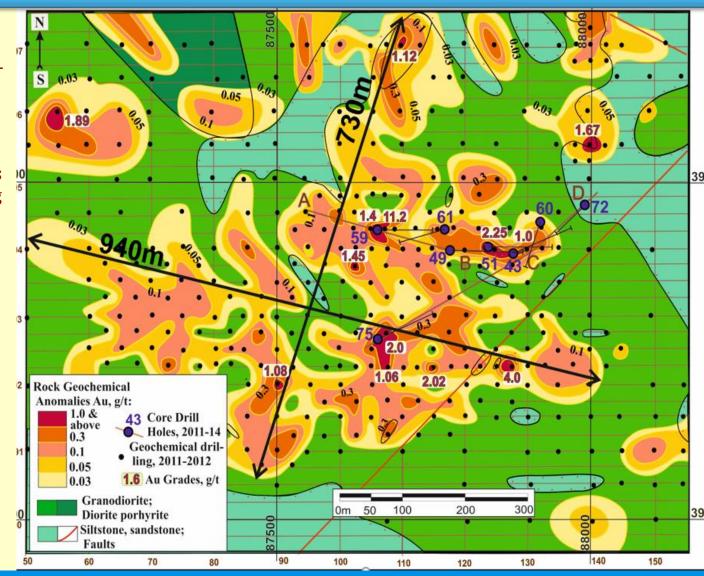
BESKAUGA MAIN CAPEX BREAKDOWN

	US\$M
Mining	8.874
Processing	213.363
Utilities	29.561
Infrastructure	67.323
Owners, EPCM	97.332
Contingency	63.824
Total	480.276

BESKAUGA Cu-Au Deposit (Copperbelt AG) versus ILOVICA Cu-Au Deposit (Euromax Ltd)

	BESKAUGA (KZ) Indicated to 500m, PFS	ILOVICA (Macedonia) Post FS^	Beskauga vs Ilovica
Resources, Ore	210Mt	198Mt	+11%
Grades:			
Copper	0.30	0.21	+42%
Gold	0.42	0.32	+31%
Resources:			
Copper	732,000t	544,000t	+34%
Gold	3.34Moz	2.60Moz	+28%
Annual Production	13MTPA	10MTPA	+30%
INITIAL CAPEX	480M	474M	+1.3%
IRR	31.6%	19.8%	+59%
NPV	US\$1,101M (7.5%)	US\$513M (5%)	+97%

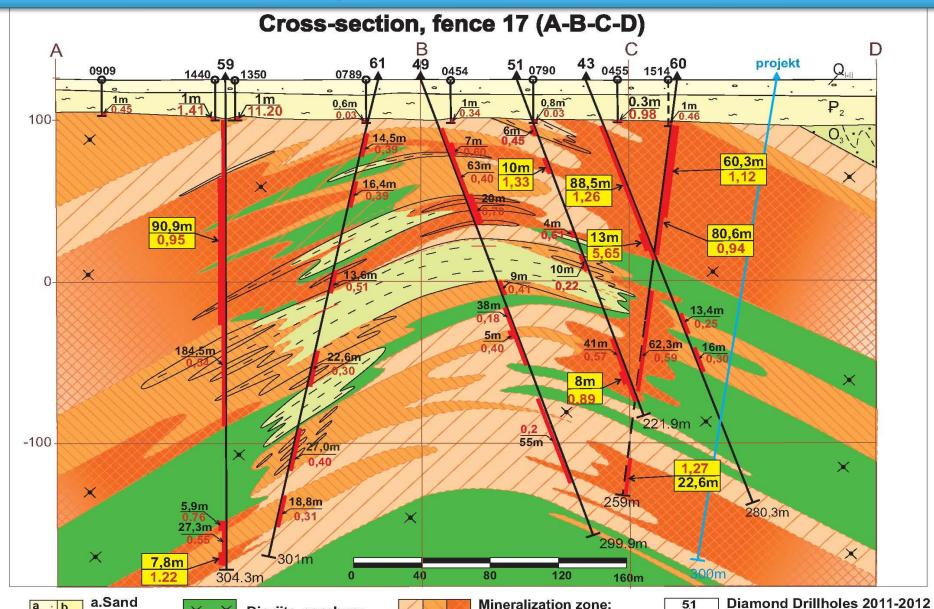
[^] scheduled for production 1Q 2018


Beskauga-South Gold Deposit

(Only 1.5km Away from Beskauga Copper-Porphyry Deposit)

- Bulk Gold mineralization at size 940 by 730 meters has been outlined by shallow RClike KGK drilling.
- Diamond drill holes have intersected massive intervals of up to 100 meters at over 1.0g/t gold, including 13m to 40m grading 2.4 to 5.7g/t. The mineralization remains open on flanks and below depth 300m.

□ JORC Inferred Resources:


- Cut-off 0.3g/t Au:
- 23.7Mt @ 0.76g/t Au for 580,744oz Au (18.7t)
- Cut-off 0.5g/t:
- 12.5Mt @ 1.10g/t Au for 440,700oz Au
- Cut-off 0.6g/t:
- 10.1Mt @ 1.23g/t Au for 398,000 oz

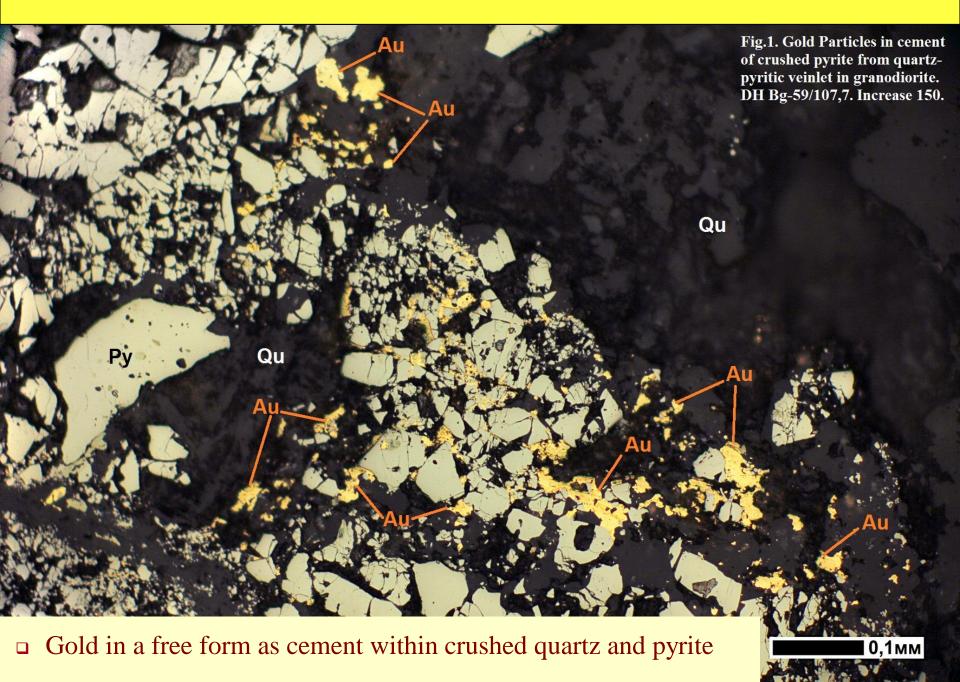
Metallurgical Testworks Obtained Impressive Gold Recovery:
 Gravity Separation (GRG) followed by Flotation of gravity tailings and CIP has obtained a Combined Gold Recovery of 83.3% (further details in separate presentation)

Beskauga-South Gold Deposit

JORC 580,744oz gold; Exploration potential +3.0 million ounces

Dioriite-porphyry

Grade Au g/t



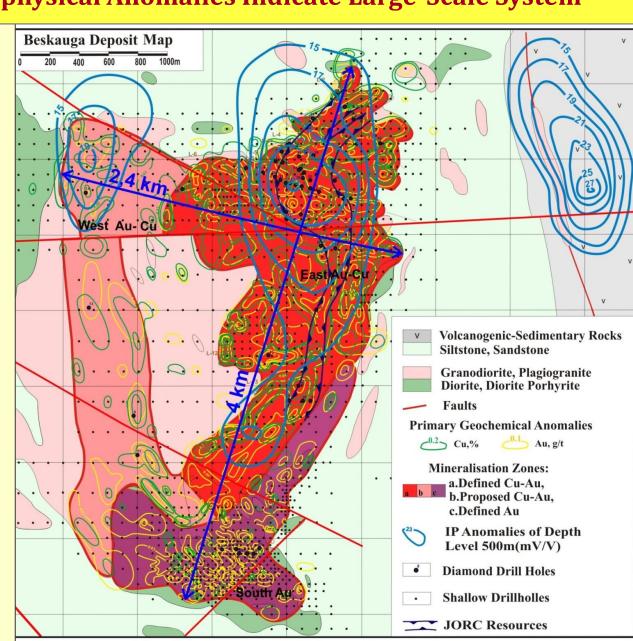
mineralization zone: a. Au 0.1-0.2g/t b. Au 0.2-0.5g/t c. Au 0.5-1.0g/t and above

Diamond Drillholes 2011-2012 Shallow Drillholes (KGK-100) 2011-2012

Beskauga-South Gold Deposit

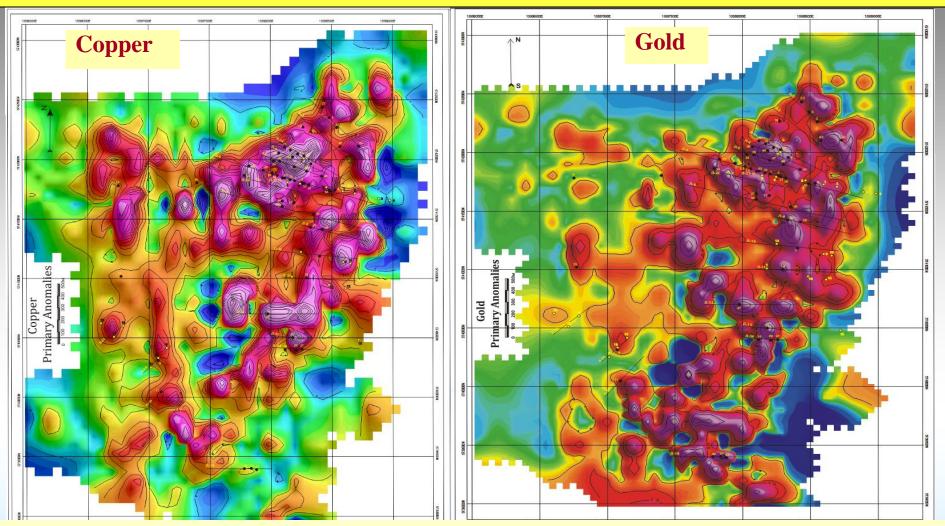
Beskauga-South Economical Model (pre-tax)

Gravity Separation only, gold recovery 50% Gold US\$1,200/oz

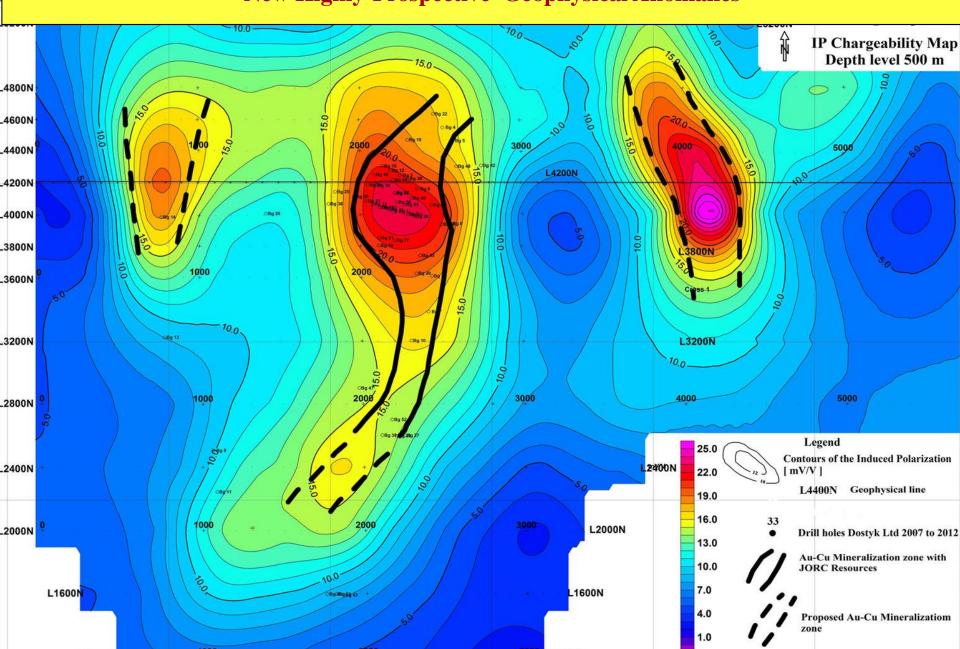

Annual Production	Mt/Y	0.5Mt	1.0Mt
Life of Mine	Yrs	20.0	10.0
Gold Recovered	OZ	221,121	221,121
Gross Revenue	US\$ M	265.3	265.3
Gross Costs	US\$ M	172.9	125.3
NPV (10%)	US\$ M	23.1	69.0
IRR	%	31%	97%
Cashflow	US\$ M	88.0	140.1
Total Revenue Free	US\$ M	71.8	118.7
Initial CAPEX	US\$ M	16.3	21.4
Total CAPEX	US\$ M	16.3	21.4
Payback Period	Г.Г.	4.0	2.0
Revenue to Capital		4.4	5.6
Cost/oz	US\$/oz	802	566
Net Profit/oz	US\$/oz	329	481

Beskauga Deposit -Great Potential

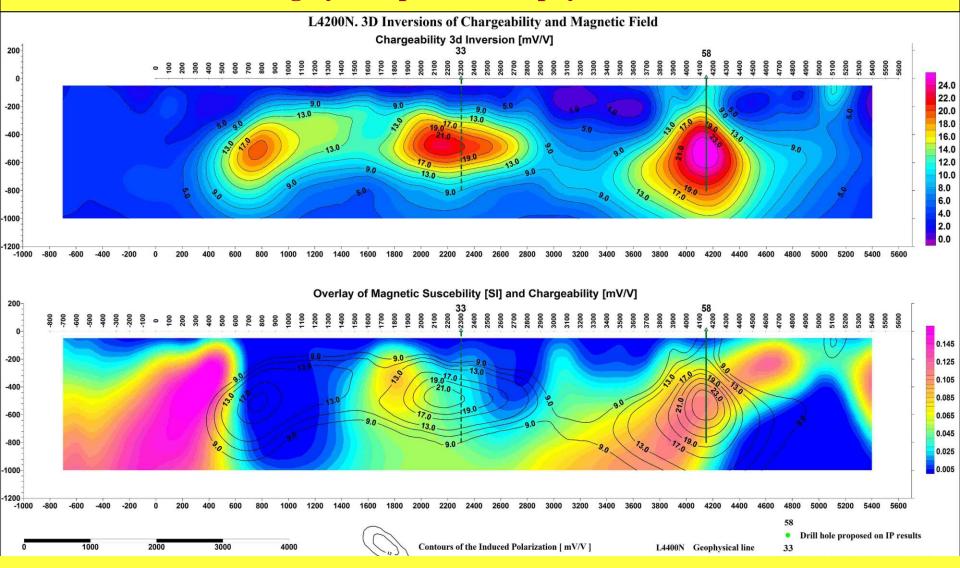
Geochemical & Geophysical Anomalies Indicate Large-Scale System


Geochemical & Geophysical Anomalies Indicate Significant Exploration Potential

- Highly-Prospective IP anomaly discovered east of known resources, could double the resources of Beskauga.
- The anomalies of Chargeability indicates potential for large-scale copper-porphyry system with a size 4 by 4km, apparently combining three large mineralization zones.
- Exploration potential:1 to 3Bt copper-gold mineralization.


Beskauga Deposit

Large Geochemical Anomalies - Potential For New Discoveries


Primary copper & gold anomalies have been obtained with shallow RC drilling through water-transported core

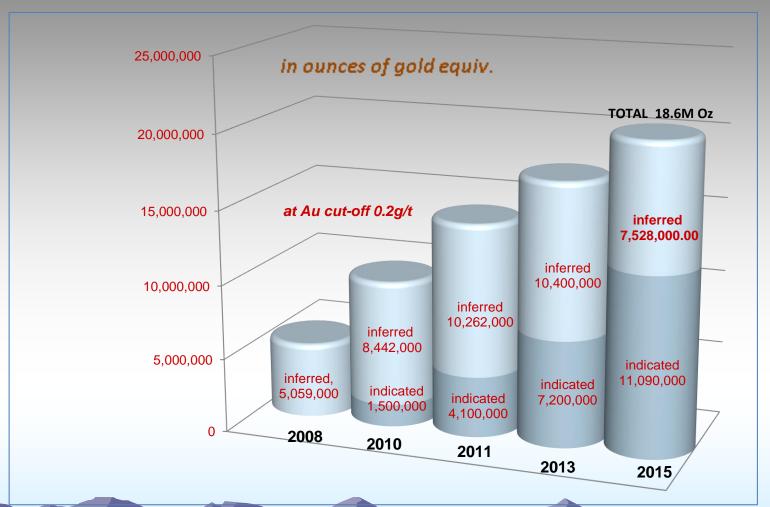
Beskauga Deposit
New Highly-Prospective Geophysical Anomalies

Beskauga Deposit

New Highly-Prospective Geophysical Anomalies

□ The anomalies of chargeability indicate potential of large-scale copper-porphyry system by size 4x4km.
 □ The central IP Anomaly has been proved by Copper-Gold Resources.

Dostyk Project Combined JORC Resources


Statement Jan 2015, (at Au Cut-off 0.2g/t)

Deposit	TONNAGE Au Coppe Kt g/t %		Copper %	Silver g/t	Mo %	Gold, Oz	Copper, t	Silver, Oz	Mo, t	
Beskauga Main	554,482	0.40	0.24	0.81	0.003	6,953,393	1,335,813	14,447,281	8,042	
Beskauga South, Au 0.5g/t	12,498	1.10	-	0.41	-	440,695	-	165,909	-	
Berezki East	11,887	0.67	0.10	1.10	-	288,890	15,840	636,300	-	
Quartzite G	21,134	0.46	0.18	4.29	-	352,540	43,250	3,508,900	-	
Total	600,001					8,035,518	1,394,903	18,758,390	8,042	

Rapid Resources Development

In six years from Zero to 21 million ounces of gold equiv.

Statement Jan 2015

Beskauga Deposit Compared with Copper Deposits in Canada & USA

Deposit	Operator	Copper (%)	Copper, tonnes	Gold (g/t)	Gold, Moz	Ag (g/t)	Silver, Moz	Copper Equiv, %
Red Chris ¹	Imperial Metals	0.33	4,037,010	0.33	12.8	1.14	43.6	0.57
New Prosperity	Taseko	0.22	2,404,064	0.41	13.30	2.3	85.0	0.53
Beskauga	Dostyk	0.24	1,445,610	0.40	7.98	0.81	16.5	0.53
Mt Polley	Imperial Metals	0.28	1,133,990	0.29	3.9	0.812	10.7	0.49
Mt. Milligan ²	Thompson Creek	0.20	997,910	0.35	5.95			0.44
Pumpkin Hollow Cu	Nevada Copper	0.38	1,873,360	0.04	717530	1.45	26.7	0.42
Casino ²	Casino Mining	0.20	2,114,000	0.23	7.8	1.71	58.1	0.38
Copper Mountain ¹	Copper Mountain	0.26	1,214,730	0.09	1.34	1.05	15.2	0.37

^{1 -} in production

^{2 –} in Development

Bes	kauga Deposit belongs to low-grade	BESKAUGA Deposit Versus World Copper-Porphyry Deposits								4	
gold-copper deposits.		Name	Country	Mining	Mln t	Cu %	Au g/t	Ag g/t	Mo %	Cu Eq, %	Au Eq, g/t
		TaldyBulak Levober	Kyrgyz	devel 2011	294	0.16	0.66	0.00	0.009	0.64	0.91
•	In last decades worldwide a number	Koksai	Kaz	Develop	705	0.43	0.22	1.24	0.008	0.62	0.88
	of such deposits have been brought	Beskauga, Indicated	Kaz	Explor	248	0.30	0.42	1.18	0.002	0.61	0.87
	into production	Red Chris	Canada	Mining	1,035	0.35	0.35	1.14		0.61	0.87
	*	Boddington	Australia	2008	835	0.11	0.69	0.00	0.000	0.59	0.85
	Shaft Creek Mine in Canada;	Altar	Argentina	Prefeasibility	495	0.53	0.06			0.57	0.82
	717MMt at 0.46% Cu equiv with	Margaret	USA		523	0.36	0.24	1.60	0.011	0.57	0.82
	costs: mining + waste \$C1.61/t,	Santa Rita	USA	1911	3,030	0.47	0.06	1.40	0.008	0.54	0.77
	processing \$C4.25/t	New Prosperity	Canada	Develop	1,150	0.22	0.41	2.30	0.002	0.54	0.77
	Aktogai deposit in	Beskauga, Ind. & Inf.	Kaz	Explor	634	0.24	0.40	0.81	0.003	0.54	0.77
	Kazakhstan :1.5Bt at 0.38% Cu,	Copper Flat	USA	1982	62	0.36	0.18	1.70	0.013	0.53	0.76
	0.02g/t Au & 0.008% Mo	_	Philippines	1974	225	0.28	0.26	4.00	0.005	0.52 0.50	0.74
		Kemess South Mt Milligan	Canada USA	1998 Mining	250 482	0.17	0.47 0.39	0.00	0.000 0.01	0.50	0.71 0.71
•	Under development; CAPEX	Erdenet	Mongolia	Iviiiiiig	1,200	0.46	0.00		0.016	0.50	0.71
	U\$1.3B, 100,000t of Cu concentrate	Bethlehem	Canada	1962	677	0.45	0.00	0.40	0.016	0.50	0.71
	per year	Bell Copper	Canada	1972	495	0.36	0.16	1.00	0.005	0.49	0.71
	Gibraltar Mine in Canada; 800MM	Mt Polley	Canada	Mining	510	0.28	0.29	0.81	0.000	0.49	0.70
	at 0.31% Cu, 0.07g/t Au. Total cash	La Arena	Peru	Mining	632	0.30	0.22	0.65	0.004	0.47	0.66
	costs of production \$C7.60.	Schaft Creek	Canada	Feasibility	972	0.30	0.14	1.76	0.020	0.46	0.66
	*	Yerington	USA	1953	261	0.46	0.00			0.46	0.65
	Boddington Mine in Australia;	Rosemount	USA	Developmen [.]	1,724	0.42			0.014	0.45	0.65
	835MMt at 0.69g/t Au & 0.11% Cu	Canariaco Norte	Peru	Prefeasibility	910	0.43		1.90		0.45	0.64
	for 18MMoz of Au Eq. Annual	Bozshakol	Kaz	Develop	1,173	0.35	0.11	0.88	0.004	0.45	0.64
	production 35.2MMt for 1.0MMoz	Giant Copper	Canada		245	0.27	0.20	2.70	0.000	0.44	0.63
	Au by cost of U\$300 per ounce, net	Casino	Canada	Feasibility	1,057	0.20	0.23	1.71	0.022	0.43	0.62
		Aktogai	Kaz	Develop	1500	0.38	0.02	1.01	0.008	0.42	0.61
	of by-product credits.	Pumpkin Hollow	USA	Feasibility	548	0.38	0.04	1.45		0.42	0.60
•	Kemess South mine in Canada;	Highland Valley	Canada	1983	451	0.38	0.00	0.00	0.010	0.40	0.58
	250MMt at 0.47g/t Au & 0.17% Cu	Ajax	Canada	2013	503	0.27	0.17	0.00	0.000	0.39	0.56
	has produced in 2006 310,200oz Au	Gibraltar	Canada	1972	800	0.31	0.07	0.90	0.008	0.39	0.55
	& 36,730t of Cu. Mining costs	Louise Lake	Canada	1000	50	0.21	0.20	0.94	0.006	0.38	0.54
	ΦC1 70/4 · • ΦC4 00/4	Highmont Poison Mountain	Canada	1980	265	0.27	0.00	0.90	0.041	0.38	0.54
	administration \$C1.57/t. Net cash cos		Canada Canada	develop 2011	808 623	0.24 0.27	0.12 0.10	3.00 1.20	0.008	0.37 0.35	0.53 0.50
	\$205/oz.		Philippines		944	0.27	0.10	1.20		0.31	0.30
	φ203/0Z.							7 1/0 1/0	CĆ12 000 /+		0.44
		Prices used for Cu Eq & Au Eq: Cu US\$5,500/t, Au US\$1,200/oz, Ag US\$18/oz, Mo US\$13,000/t									

Thank You